骆俊蓄电池6GFM-100AH使用说明
骆俊蓄电池6GFM-100AH使用说明
产品特性:
1、气相二氧化硅配制优质胶体,电解液分布均匀,不存在酸液分层现象。
2、电解液呈凝胶固定状态,不流动、无漏液、使极板各部分反应均匀。
3、放射状的板栅设计,采用紧装配技术,具有优良的高率放电性能。
4、深循环电池设计,采用4BS铅膏技术,电池循环使用寿命长。
5、采用独特的板栅合金、特殊的铅膏配方 以及独特的正负铅膏配比设计,电池具有优异深循环性能和过放电恢复能力。
6、全部采用高纯原材料,电池自放电极小。
7、采用气体再化合技术,电池具有极高的密封反应效率,无酸雾析出,安全环保,无污染。
8、采用高可靠的密封技术,确保电池具有安全可靠的密封性能。
当今阀控式密封铅酸蓄电池有两类,即分别采用超细玻璃纤维棉(AGM)隔板和硅凝胶二种不同方式来“固定”硫酸电解液。它们都是利用阴极吸收原理使电池得以密封的,但给正极析出的氧气到达负极提供的通道是不同的。对AGM密封铅酸蓄电池而言,AGM隔膜中虽然保持了电池的大部分电解液,但必须使10%的隔膜孔隙中不进入电解液。正极生成的氧气就是通过这部分孔隙到达负极而被负极吸收的。对胶体密封铅酸蓄电池而言,电池内的硅凝胶是以SiO2质点作为骨架构成的三维多孔网状结构,它将电解液包藏在里边。电池灌注的硅溶胶变成凝胶后,骨架要进一步收缩,使凝胶出现裂缝贯穿于正负极板之间,给正极析出的氧气提供了到达负极的通道。
由此看出,两种电池的区别就在于电解液的“固定”方式和提供氧气到达负极通道的方式有所不同,因而两种电池的性能也各有千秋。本文主要讨论AGM密封铅酸蓄电池的性能特性。
2失效模式
阀控式密封铅酸蓄电池由于具有体积小、重量轻、自放电小、寿命长、节省投资、安装简便、安全可靠、使用方便、少维护不溢酸雾、对环境无腐蚀、无污染等优良特性,并可实现无人值守和微机集中监控的现代化管理,因而在通信局站中被大量使用。但从使用情况来看,不少用户不甚了解电池的使用要求,未能更新维护观念,及时调整维护方法,致使电池较快失效。
2.1.早期失效模式
2.1.1早期失效
早期失效是指蓄电池组在使用过程中,只有数个月或1年时间,其中个别电池的性能急剧变差,容量低于额定值的80%。
2.1.2早期失效原因
导致电池早期失效的根本原因是电池中正负极板与AGM隔板中电解液脱离接触。这里有电池设计问题,如极群组装压力和电解液量等。也存在以下将要讨论的电池在使用过程中失水问题。
2.2干涸失效模式
2.2.1干涸失效
阀控式密封铅酸蓄电池一旦处于“富液”状态,会使隔板中O2的通道阻塞,气体复合效率低,电池内压力增大,一部分O2来不及复合就从电池内部溜出,导致失水。特别是在安全阀性能不良情况下,失水更加严重,经过一段时间后,电池会失水而干涸。
2.2.2干涸失效原因
干涸失效是阀控式密封铅酸蓄电池所特有的,从电池中排出氢气、氧气、水蒸汽、酸雾,都是电池失水的方式和干涸的原因。
失水的原因有四:
⑴气体再化合的效率低;⑵从电池壳体中渗出水;⑶板栅腐蚀消耗水;⑷自放电损失水。
干涸的原因如下:
(1)浮充电压过高:当浮充电压过高,气体析出量增加,气体再化合效率低,安全阀频繁开启,失水多。(2)环境温度升高:环境温度升高,未及时调整浮充电压,同样产生失水过程。
2.3热失控失效模式
2.3.1热失控
由于充电电压和电流控制不当,在充电后期,会出现一种临界状态,即热失控。此时,蓄电池的电流及温度发生积累性的相互增强作用,使电池槽壳变形“鼓肚子”。
2.3.2出现热失控的原因
(1)氧复合反应
2Pb +O2→2 PbO+Q1 Q1 =219.2kJ/mol
PbO+ H2SO4 →PbSO4+H2O+ Q2 Q2=172.8 kJ/mol
氧复合反应是放热反应,它将导致电池温度升高,电池内阻下降,如不及时下调浮充电压就会使浮充电流加大,引起析氧量加大,复合反应加剧。如此反复积累,将会导致电池出现热失控。
5.在为UPS选配输入输出断路器时,首先要求断路器标称的额外电压要契合UPS的额外输入输出电压,如单进单出UPS可选单极(或N+1,或南北极)额外电压为AC220V或250V的断路器,三进三出UPS可选三极(或N+3,或四极)额外电压为AC380V或415V的断路器。要留意断路器的额外分断才能ICU要契合UPS厂家的要求,一般小型UPS为10KA或6KA,大中型UPS都要求在30KA以上。
6.UPS与外接长延时电池之间连线不宜过长,否则在电池连线上丢失的压降过大。别的,用户往往十分留意UPS主机作业的环境温湿度,电池与主机一起放置可使电池也获得杰出的作业环境。骆俊蓄电池6GFM-100AH使用说明
7.主张用户为UPS及其负载独自设置配电盘(柜),以便于对UPS及其维护的负载进行会集、牢靠的操控。此配电盘(柜)要契合国家相关规范。